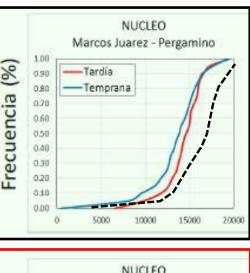
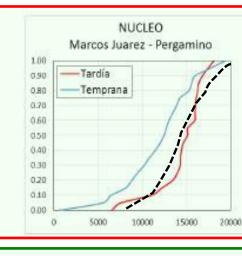
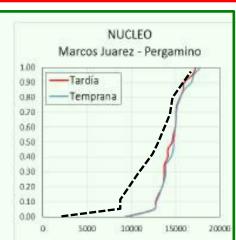
Tendencias en fertilización de maíz -Ajuste final de la nutrición en cereales de invierno


Ing. Agr. (MSc.) Gustavo N. Ferraris

INTA EEA Pergamino

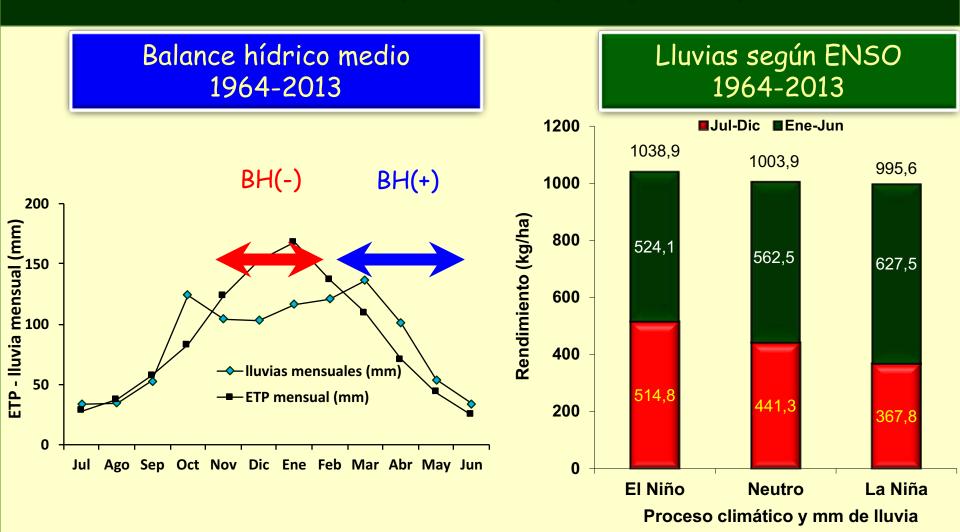

Hoja de Ruta

- 1. El marco global. Escenarios hídricos según fecha de siembra.
- 2. Interacciones entre Manejo y Fertilización.
- 3. Nitrógeno: Dosis Momentos Riesgo de pérdidas.
- 4. Fósforo: Estrategias de corto y mediano plazo.
- 5. Trigo: Decisiones en post-emergencia para balancear rendimiento y calidad.

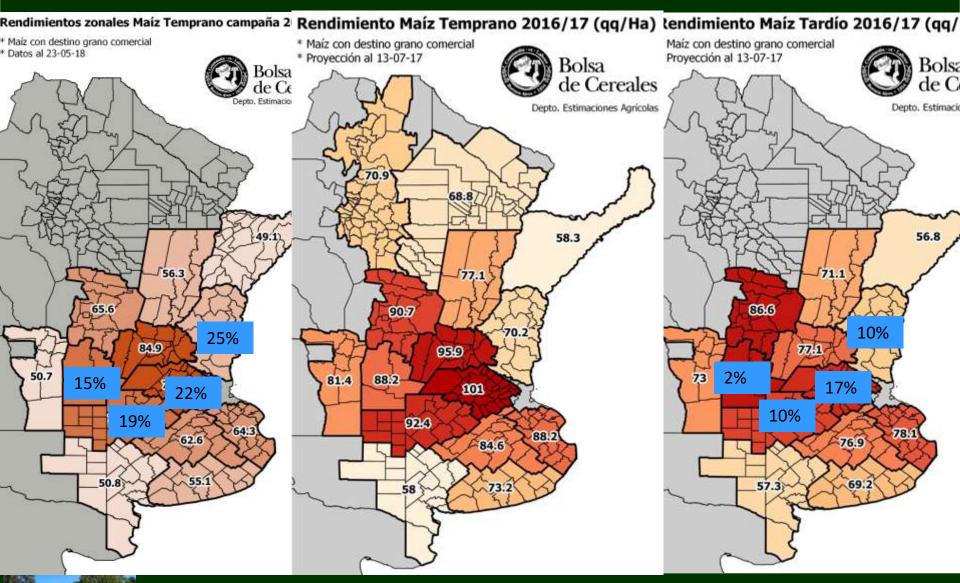


Escenario El Niño – La Niña con señal muy fuerte en la región.

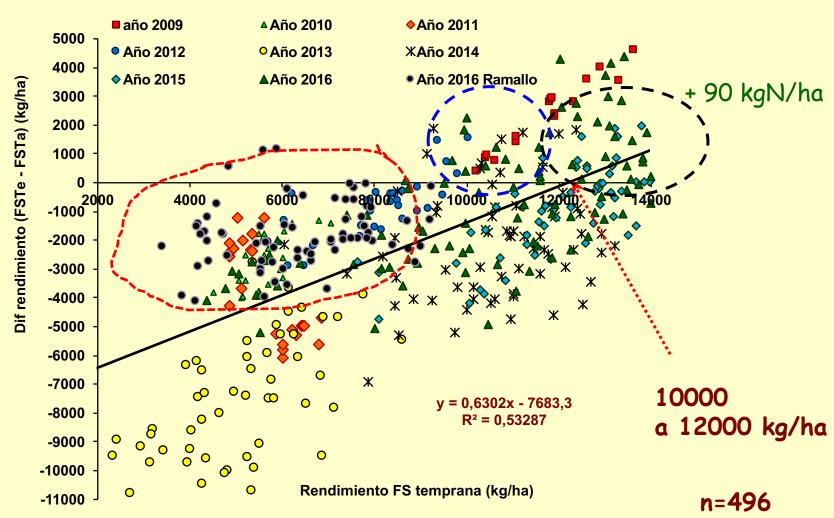
Normal



La Niña


El Niño

Distribución de Precipitaciones y Evapotranspiración



Atlas global Brechas de Rendimiento www.yieldgap.org

Ing. Agr. (MSc) Gustavo N. Ferraris
INTA EEA Pergamino

Temprano vs tardío según potencial de rendimiento Campañas 2009/10 a 2016/17

En Ramallo sólo 3/69 rinde más temprano

Brechas de Rendimiento en Maíz. Campañas 2016/17

- ✓ Escenario El Niño La Niña con señal muy fuerte en la región.
- ✓ Fecha de siembra y Presencia de napa con gran impacto en los rendimientos.
- ✓ Siembras tardías con adaptación en el tramo bajo y medio de la curva de rendimientos.
- ✓ Necesidad de mejora en el sistema de tardíos desde floración en adelante:

Velocidad de secado Vuelco, inserción y sanidad de espiga Estructura de planta Fortaleza de caña y raíces Cosecha y mercados.

Ferraris et al., 2016

Brechas de Rendimiento en Maíz. Campañas 2016/17

Ensayos: 2016/17 - Ferré - Junín - San Antonio de Areco

Ensayos: 2016/17 - Fontezuela 1, Fontezuela 2, SA de Areco 1, SA de Areco 2

Sin restricciones de PS. Libre de otras adversidades

	Densidad	Fert Base	Fert V6	Funguicida	Foliar				
	Baja								
T1	60000	PN							
T2	60000	PN	N						
Т3	60000	PN		Si					
T4	60000	PN			Si				
T5	60000	PN	N	Si	Si				
		Al	ta						
T10	80000	PN	N	Si	Si				
Т9	80000	PN	N	Si					
Т8	80000	PN	N		Sí				
T7	80000	PN		Si	Si				
Т6	80000	PN							

Ferraris et al., 2016

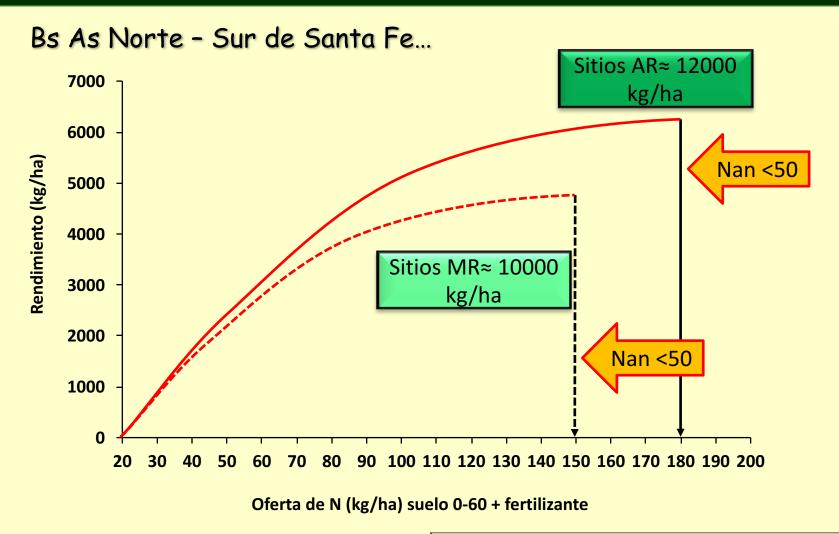
INTA EEA Pergamino

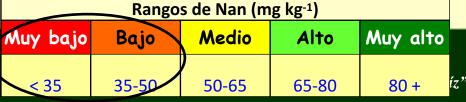
Factores de Producción y Rendimientos Potenciales

Ensayo Brechas x tecnologías 2015/16 - 2017/18

Factores	Temprano	Tardío	Segunda	
Genética	15,5 %	10 %	8 %	Genética: R. Máx vs R. Medio
Doble P	5-7 %	0-2 %	0-2 %	P: P 20 (s) vs P40 (s)
Refertiliz N	10-15	5-7 %	20 %	N: 60 (s) vs 60 (s) + 60 (V6)
SANIDAD	6,3 %	8,0 %	6,2 %	Densidad: 60 vs 80 mil plantas
DENS (óptimo)	8,0 %	3,8 %	1,2 %	Sanidad y S + Zn: Con vs Sin
DENS (mínimo)	9,3 %	2,5 %	-1,8 %	El rendimiento alcanzable al poco tiempo es el óptimo
Azufre + Zinc	7,7 %	3,5 %	7,6 %	
BRECHA TOTAL	30 %	20 %	35 %	

Ing. Agr. (MSc) Gustavo N. Ferraris


Deficiencia de Nitrógeno: Síntomas

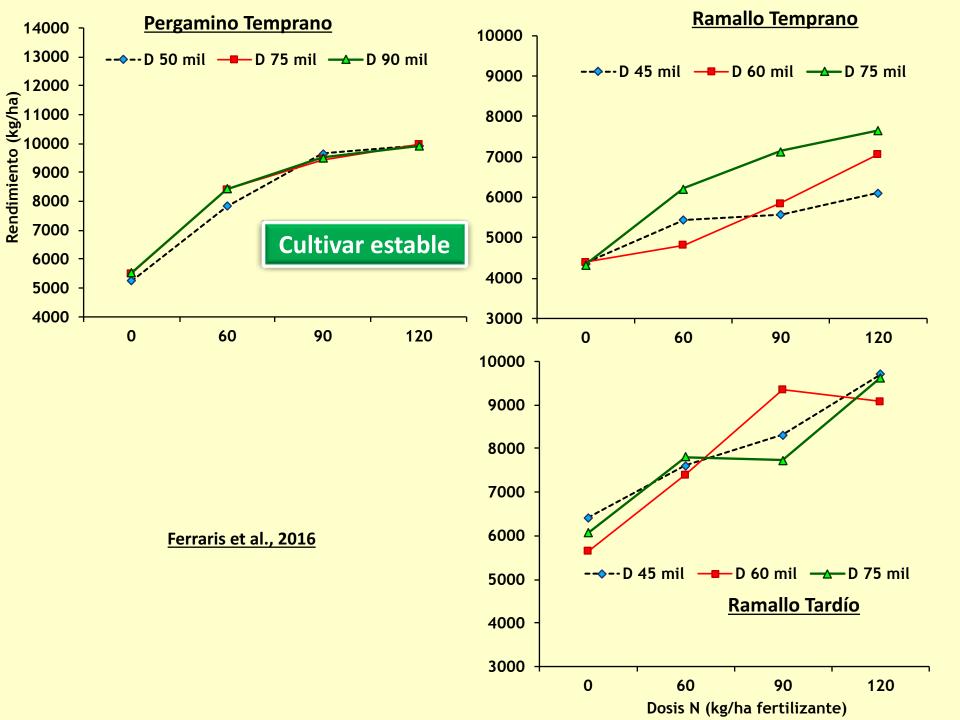

Ing. Agr. (MSc) Gustavo N. Ferraris
INTA EEA Pergamino

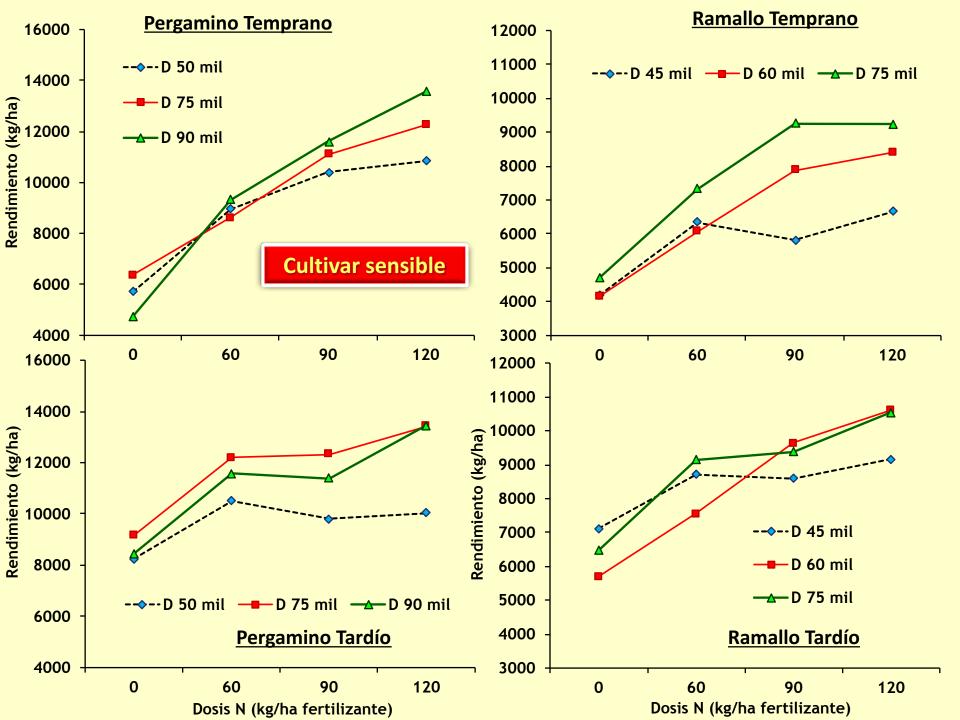
Como utilizar el dato de Nan?

Ferraris y col. Experimentos 2006/07 a 2016/17

Ing. Agr. (MSc) Gustavo N. Ferraris
INTA EEA Pergamino

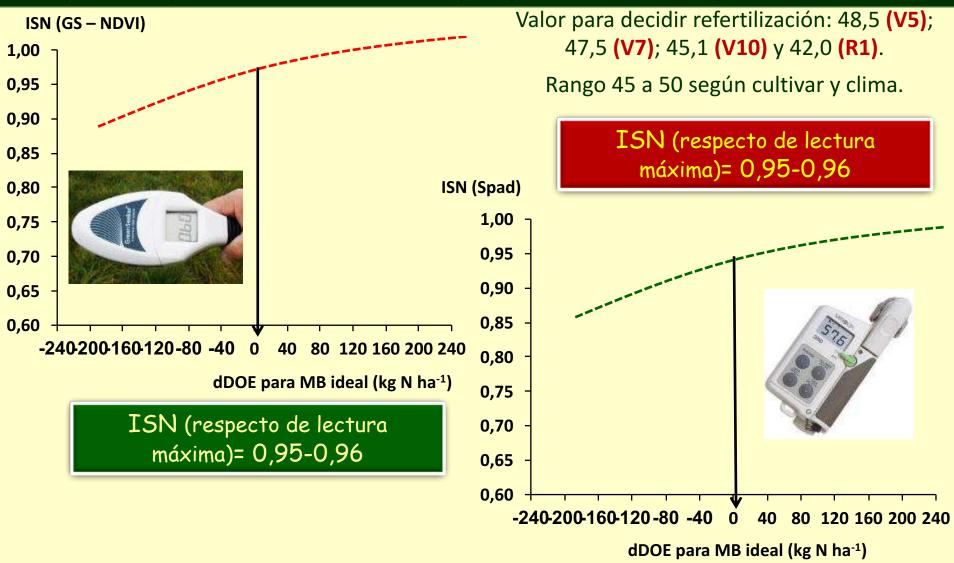
Como utilizar el dato de Nan?


Ferraris y col. Experimentos 2006/07 a 2016/17



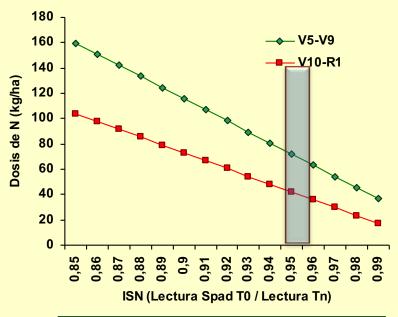
Rangos de Nan (mg kg-1)

Muy bajo Bajo Medio Alto Muy alto


< 35 35-50 50-65 65-80 80 +

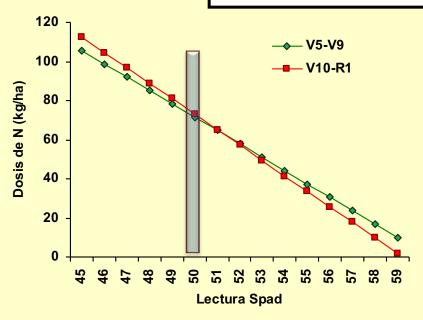
La discusión no termina a la siembra

El productor precavido usa N a la siembra pero presta atención a lo que sucede en el ciclo


Respuesta a N y Medición de clorofila

La precisión (R²) mejora si:

Se determina el ISN en lugar de una lectura directa. Si no se agrega N a la siembra.

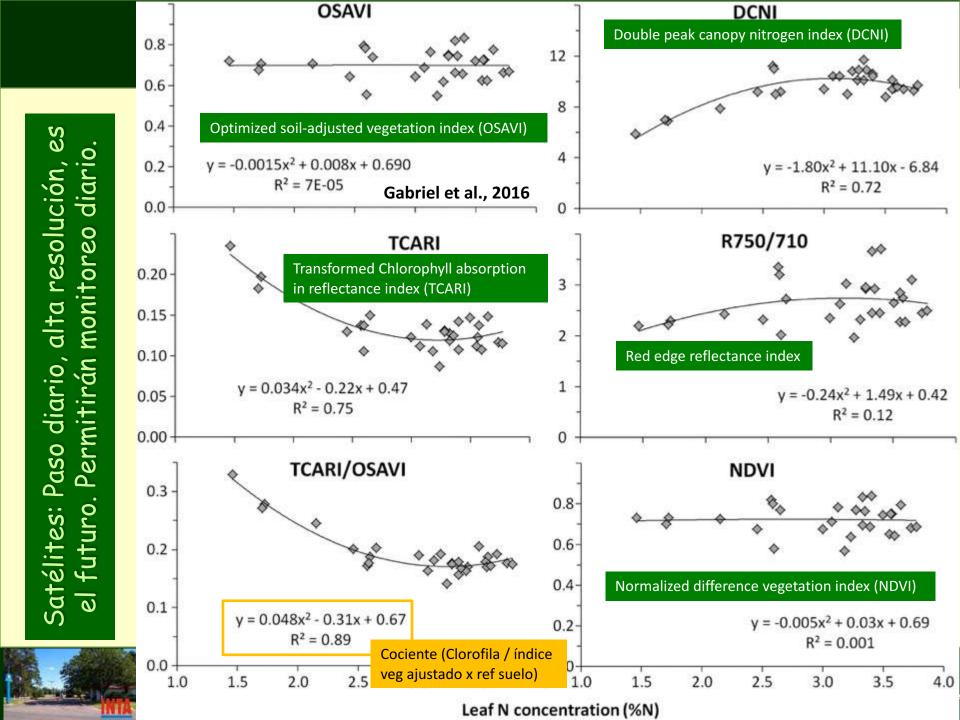

Si la medición se realiza en estadíos más avanzados.

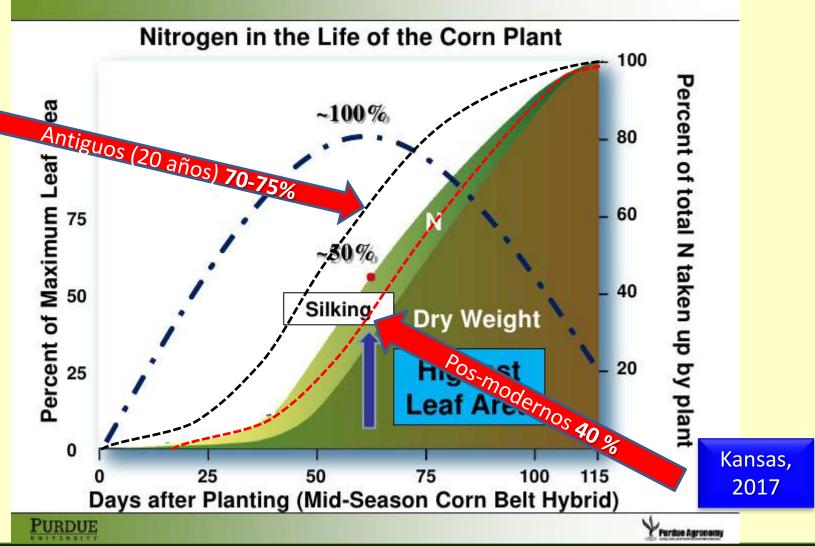
Scharf et al., 2006. Sobre 66 experimentos de dosis de N en EEUU

Dosis N= 631 - 620 x ISN Spad R2 = 0,656 entre V10 y R1

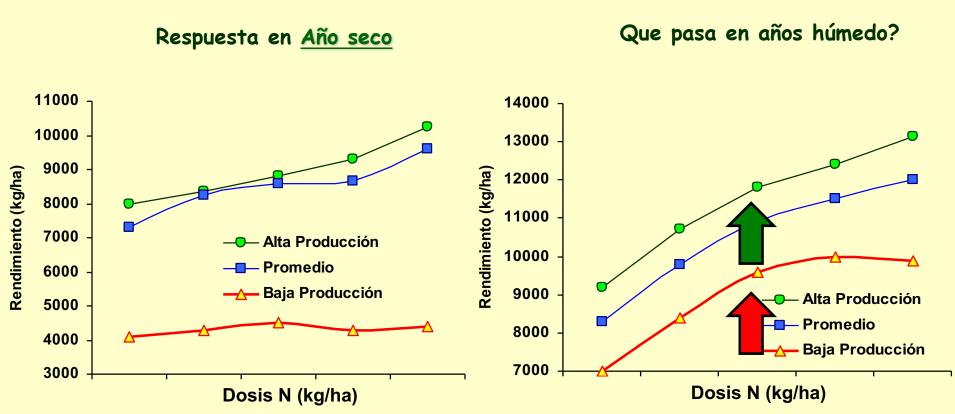
Dosis N= 413 - 6,83 x Lectura Spad R2 = 0,35 Entre V5 y V9

Dosis N= 468 - 7,9 x Lectura Spad R2 = 0,51 entre V10 y R1


Sensores: SPAD y Dualex® Scientific



Dinámica de absorción de Nitrógeno



Proceso climático y Respuesta a N

El factor que más afecta la respuesta a N es la condición hídrica

LLuvias de Octubre incrementan Respuesta a N en bajos o ambientes con napa, por lixiviación.

Lluvias de **Noviembre y Diciembre** incrementan la respuesta en lomas y suelos "con restricciones" costeros, erosionados u overos, por **mayor rendimiento**.

Lixiviación de Nitrógeno

Movimiento de nitrógeno según lluvia excedente (mm de agua libre) Del N que sale del suelo, el 50% podría ser recuperado por el cultivo

Modelo de Burns 76 modificado (GM 2018).
---------------------------------	-----------

			100 mm	200 mm
Estrato	N Inicial	Acumulado	Acumulado	Acumulado
cm	Kg/ha	Kg/ha	Kg/ha	Kg/ha
0-20	120	120	38	19
20-40	20	140	78	40
40-60	10	150	113	62
60-80	5	155	141	82
80-100	5	160	159	102
100-120	0	160	160	119
120-140	0	160	160	133
140-160	0	160	160	145
160-180	0	160	160	154
180-200	0	160	160	159
200-220	0	160	160	160

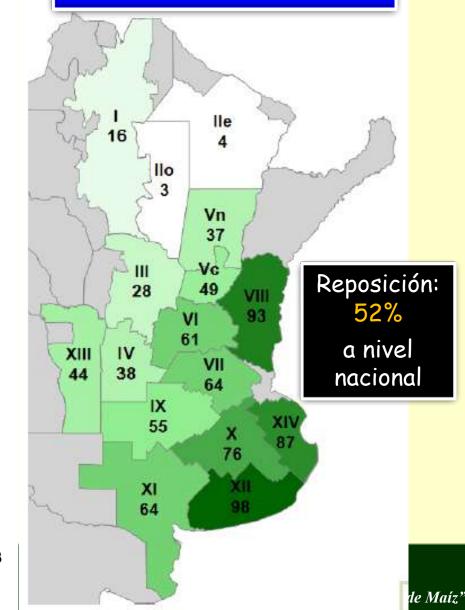
Experimentos de aplicación tardía de N

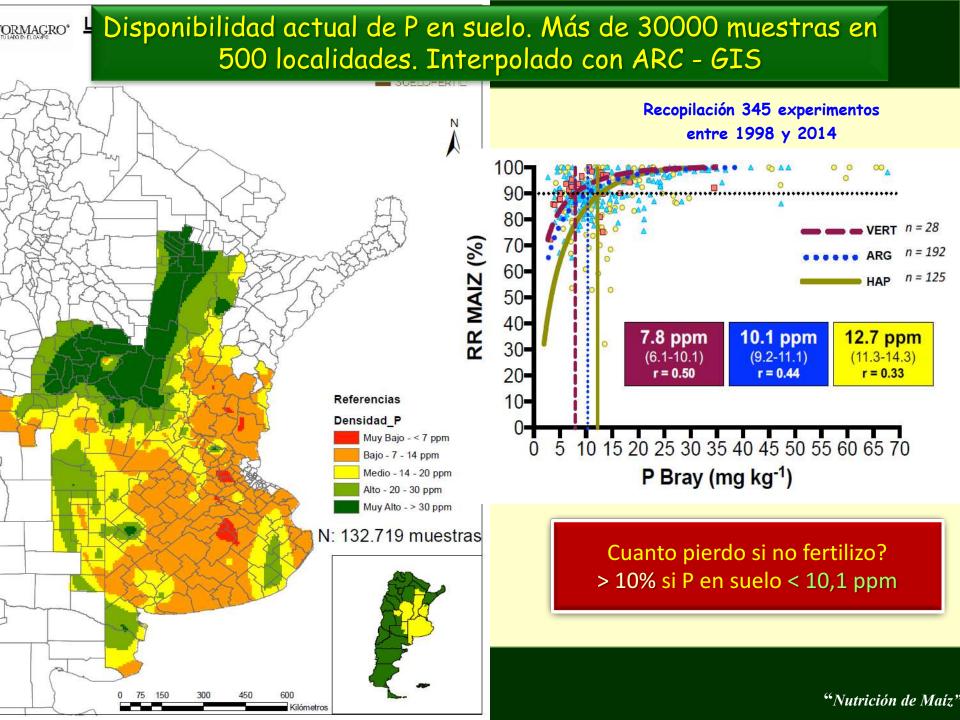
Kansas State - Riego

	Starter	Presiembra	V5-V10	V11-VT	VT R2	Total
Preplant	23	181	0	0	0	203
Sidedress	23	0	102	79	0	203
Sidedress Max	23	0	102	79	45	248
Sdress x Sensor	23	0	102	79	30	234
Referencia	23	181	102	79	45	429

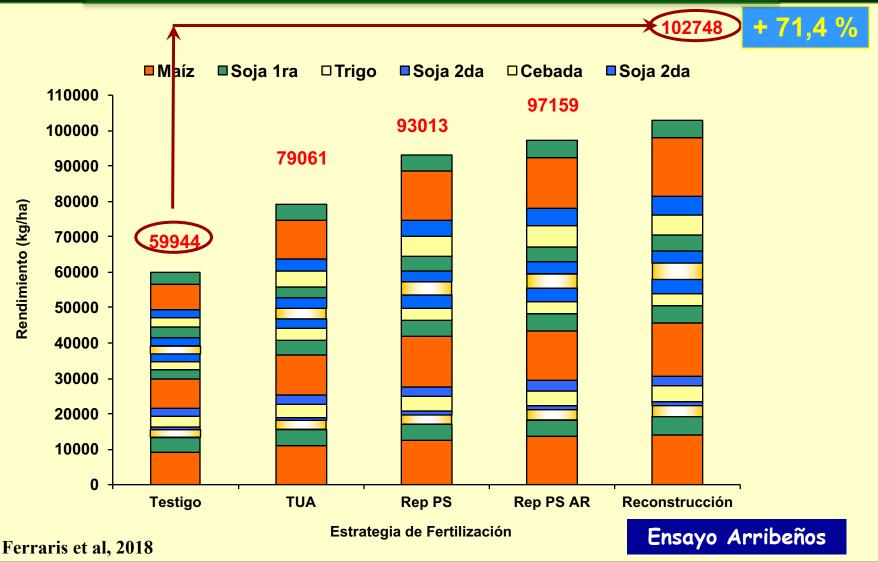
	2014	2015
Preplant	16068	11423
Sidedress	17260	12427
Sidedress Max	17009	12302
Sdress x Sensor	18762	12929
Referencia	18076	13494

Aubert et al., 2016

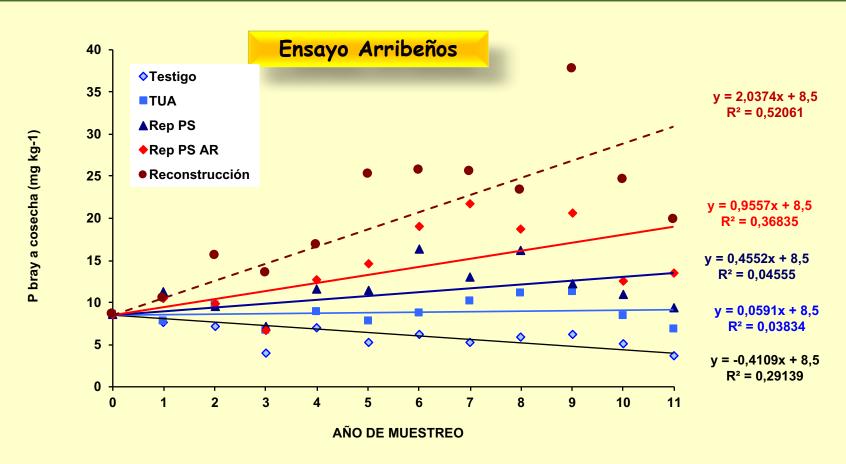

Extracción de fósforo


Campaña 2016/17. Seis cultivos (kg P/ha cosechada)

lle 14 12 llo 14 Vn 14 ۷c III 16 14 VIII 13 XIII IV 16 16 IX XIV 15 X 15 XI XII 11 11 Fuente: Bolsa de cereales Bs As, 2018

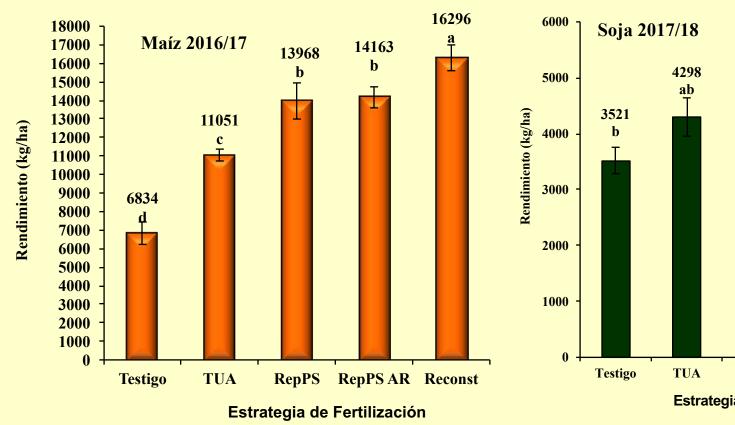

Reposición de fósforo

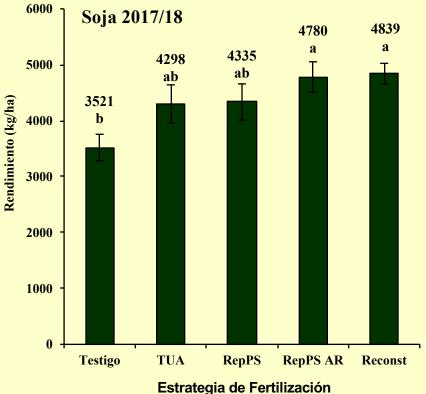
Campaña 2016/17. Seis cultivos (% reposición)


Rendimientos acumulados luego en doce secuencias, diecisiete cultivos.

Ing. Agr. (MSc) Gustavo N. Ferraris

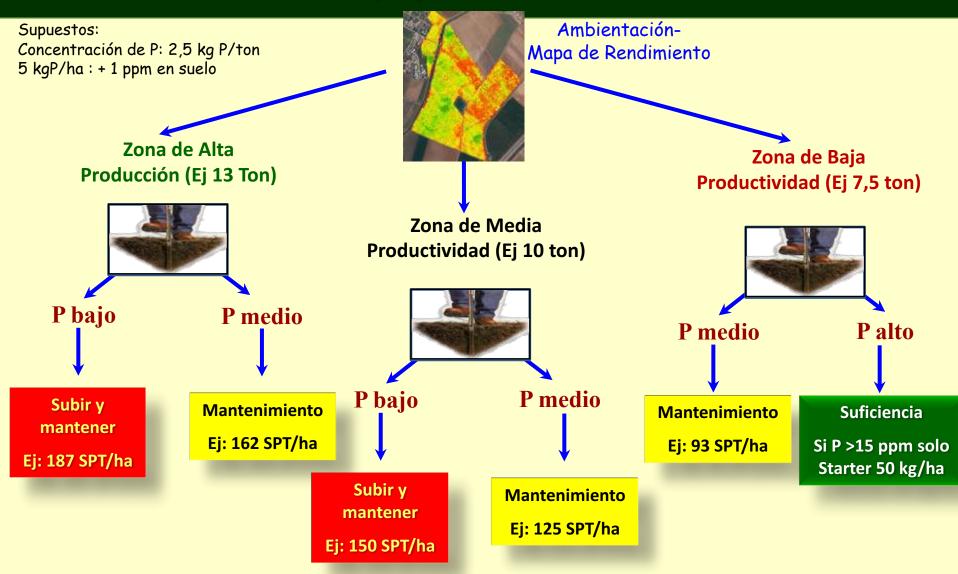
Cambios en los niveles de fósforo en el mediano plazo




Ferraris et al, 2016

Otros cambios: Baja pH, MO aumenta ligeramente, Aumenta N en suelo y grano, 5 mínimo en tratamiento 2

Rendimientos: Maíz campaña 2016/17. Efecto residual de 10 años previos



Ferraris et al, 2018

Ensayo Arribeños

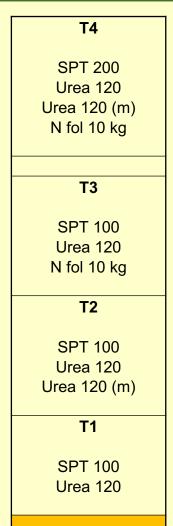
Fertilización por ambiente (variable?) según productividad y nivel de fósforo en suelo

INTA EEA Pergamino

Variedad de nuevas tecnologías

- ✓ Inhibidores de la Ureasa: Previenen volatilización: NBPT, NBPT + NPPT.
- ✓ Inhibidores de lixiviación: DMPP, Nytrapyrin.
- ✓ Impregnaciones: Sobre fuentes de P, Zinc, Accomplish, Boro, solubilizadores.
- ✓ Sobre Urea: Zinc (con buffer), Carbonato de Calcio.
- ✓ Fuentes líquidas y microgranuladas. Amplian la paleta de oferta de P. (merece discusión). No son sólo fertilizantes: transportadores de micronutrientes, rhizobium, hormonas de crecimiento, detoxificadores de herbicidas.
- ✓ Tratamientos biológicos: Pseudomonas, Azospirillum, Bacillus, Trichoderma.

 Avances en las formulaciones, posibilidad de pre-tratamiento. Efectos moderados sobre el rendimiento pero muy estables en el tiempo.
- ✓ Moléculas con efecto fisiológico no nutricional: Stimulate, Bioforge Advance, Basfoliar (varios), Smartfoil, Biozyme, Seamaxx, Corn Seed, Grammy Crop, etc. Mejora respecto de años anteriores. Efectos interesantísimos, muy superiores a los que tuvieron en el origen de la tecnología


Experimentos de la campaña 2017/18

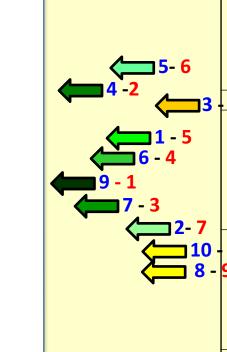
FS 16 de Junio. 3 aplicaciones de insecticida + fungicida

$$(Z33 + Z65 + Z75)$$

	Rendim	Rendimientos (media dos repeticiones)							
	T1	T2	Т3	T4	Promedio Variedad				
DM Algarrobo	5882,4	6544,1	6205,9	7088,2	6430,1				
ACA 360	6060,5	6264,5	6613,0	6802,0	6435,0				
Baguette 750	5897,5	6226,5	7092,0	6537,0	6438,3				
SY 120	6330,4	7338,2	6518,4	8102,9	7072,5				
Buck Saeta	5926,5	6187,5	5702,2	7022,1	6209,6				
ACA 908	5352,9	5161,8	5187,5	6161,8	5466,0				
MS INTA 415	5834,6	6591,9	5944,9	7018,4	6347,4				
DM Ceibo	6301,5	7143,4	6507,4	8000,0	6988,1				
MS INTA 615	4683,8	6106,6	5125,0	5650,7	5391,5				
Cebada Traveller	5162,0	5952,5	5731,5	5930,0	5694,0				
Promedio fert	5743,2	6351,7	6062,8	6831,3					

- Novedad de la campaña SY120. Muy bien DM Ceibo.
- > Destacados B750, ACA 360 y DM Algarrobo. También MS 415 y Buck Saeta
- Gran diferencia entre variedades en T1. Más uniformidad en T4.
- T2 vs T1: > Intercepción, NDVI y SPAD en Z41.
- Diferencia visual en todos los tratamientos.

Ing. Agr. (MSc) Gustavo N. Ferraris



Experimentos de la campaña 2017/18

FS 16 de Junio. 3 aplicaciones de insecticida + fungicida

(Z32 + Z65 + Z75)

		Proteína (%)					
	T1	T2	Т3	Т4	Promedic Variedad		
DM Algarrobo	9,6	10,4	9,5	10,8	10,1		
ACA 360	11,1	10,6	11,1	11,8	11,1		
Baguette 750	8,8	10,6	8,7	9,8	9,5		
SY 120	10,1	10,9	9,7	10,1	10,2		
Buck Saeta	9,6	11,2	9,6	11,2	10,4		
ACA 908	11,6	12,4	11,4	12,4	12,0		
MS INTA 415	10,2	10,9	9,9	11,3	10,6		
DM Ceibo	9,2	10,6	9,5	10,8	10,0		
MS INTA 615	9,4	9,9	9,0	10,1	9,6		
Cebada Traveller	9,2	9,4	10	9,9	9,6		
Promedio fert	10,0	10,8	9,8	10,9			
Promedio (con cebcer)	9,9	10,7	9,8	10,8			

SPT 100 Urea 120 N fol 10 kg

T3

T4

SPT 200 Urea 120 Urea 120 (m) N fol 10 kg

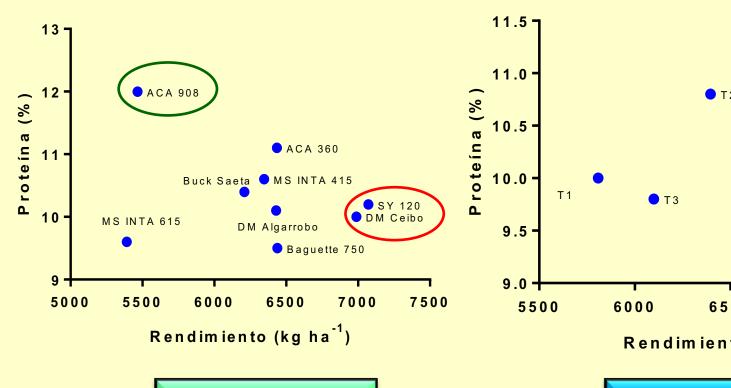
SPT 100 Urea 120 Urea 120 (m)

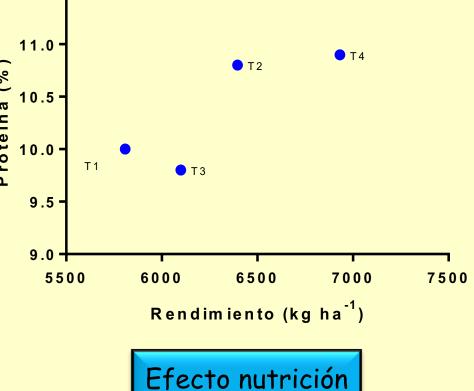
T1

- SPT 100
- Urea 120

Variedades de alta proteína son menos dependientes de manejo.

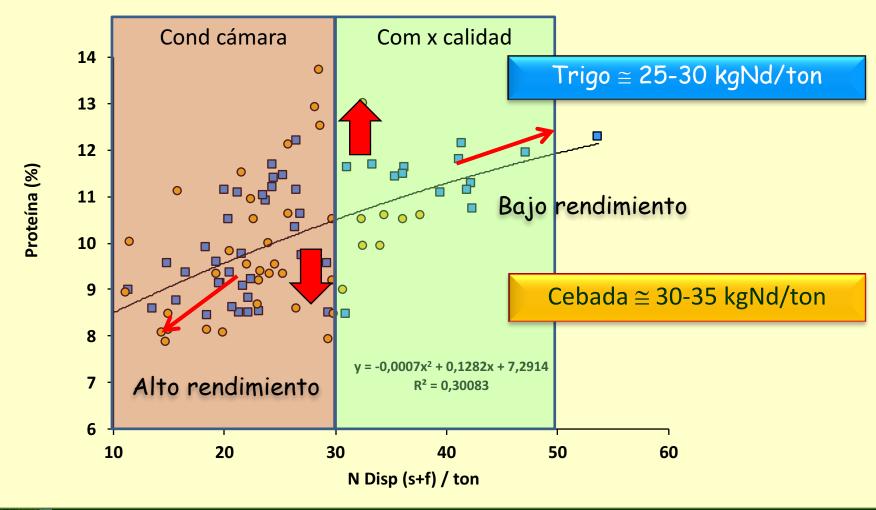
La proteína depende más de la variedad que del Grupo de calidad


> Cebada mayor potencial de dilución que trigo (proteína más baja a igual rendimiento).


Con fertilización restrictiva el efecto varietal se expresa en mayor medida.

Como armonizar rendimiento y calidad?

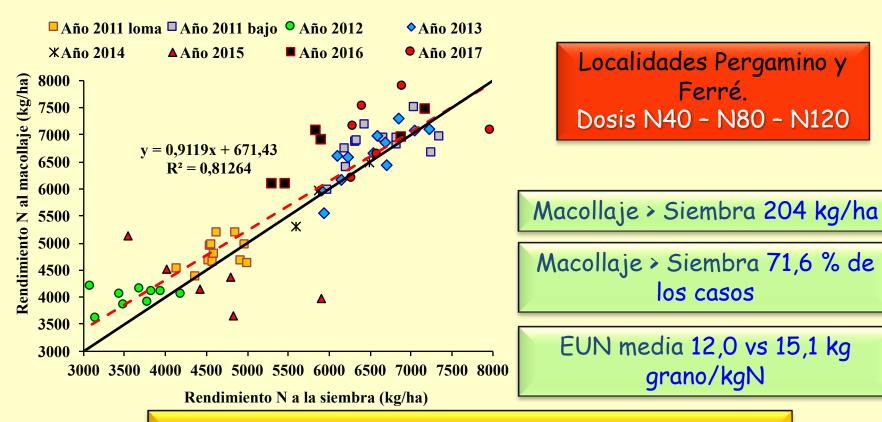
Ferraris y Usandivaras, 2018



Efecto variedad

Relaciones con la calidad. Ensayos Momentos y Partición

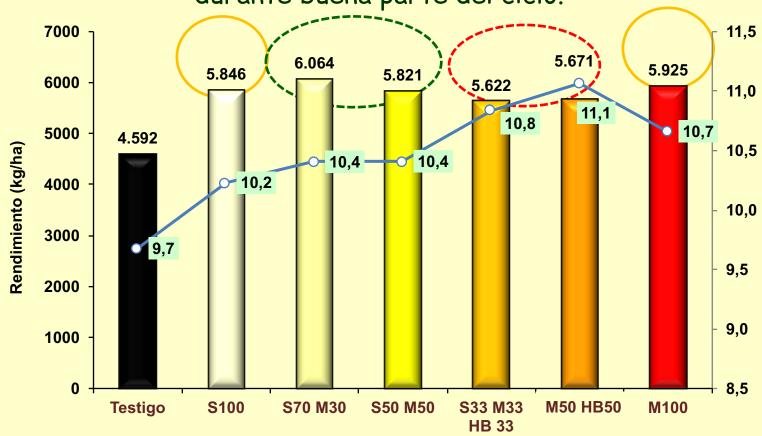
Pergamino. Años 2014 -2015 -2016-2017



Eficiencia Agronómica de Uso de N según Momento Aplicación

Rendimiento Macollaje vs Siembra. Años 2011 - 2012 - 2013 - 2014 - 2015 - 2016 - 2017

Ferraris, 2018. 8 experimentos. 74 parcelas



Mayor EUN al macollaje en Dosis bajas. Similar en Dosis altas.

Trigo: Partición de N. 5 años

Los cultivos invernales brindan alternativas de aplicación de N durante buena parte del ciclo.

Tratamientos de fertilización

Trigo Pergamino 2013 a 2017. Variedades GII. Dosis N100

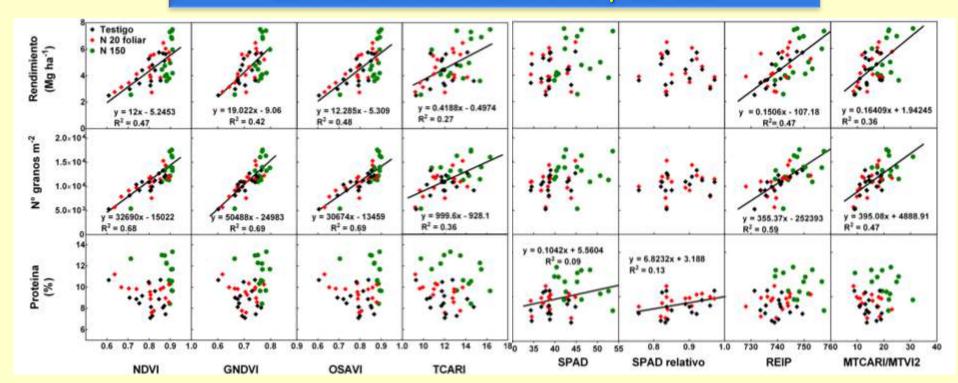
Ferraris, 2018

Ing. Agr. (MSc) Gustav

Cebada: Partición de N. 5 años

Los cultivos invernales brindan alternativas de aplicación de N

Tratamientos de fertilización


Cebada 2013 a 2017. Cv Andreia y Traveller. Dosis N100 Ferraris, 2018

Ing. Agr. (MSc) Gustavo N. F

Con que herramientas contamos para monitorear el Nitrógeno?

Red de Fertilización en Cebada cervecera. Estimación de rendimiento y calidad

El N es un blanco móvil que debemos continuar monitoreando durante el ciclo.

Boero et al., 2016

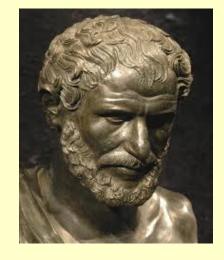
Valores Spad y proteína esperada

Trigo GII	Spad							
Rinde	35	37	39	41	43	45	47	
4000	9,8	10,0	10,2	10,4	10,6	10,8	11,0	
4500	9,5	9,6	9,8	10,0	10,2	10,3	10,5	

1% de proteína: 11,2 kgN en grano adicionales en 7000 kg/ha – 6,4 kgN en 4000 kg/ha. Eficiencia de 50%: 22 kgN/ha aplicados $\cong 50$ kg/ha Urea adicionales aplicados. Quien paga?

7000	8,4	8,5	8,6	8,7	8,8	8,9	9,0
Cebada A	ndreia –			Spad			
Rinde	35	37	39	41	43	45	47
4000	10,4	10,6	10,8	10,9	11,1	11,3	11,4
4500	10,1	10,3	10,4	10,6	10,7	10,8	11,0
5000	9,9	10,0	10,1	10,3	10,4	10,5	10,6
5500	9,6	9,8	9,9	10,0	10,1	10,2	10,4
6000	9,5	9,6	9,7	9,8	9,9	10,0	10,1
6500	9,3	9,4	9,5	9,6	9,7	9,8	9,9
7000	9,2	9,3	9,4	9,5	9,6	9,7	9,8

(GM 2018)


Algunas preguntas actuales

El año actual a que se parece? Al año anterior? Vuelve El Niño? Se inunda todo?

Fertilizo como el año pasado? Más o menos?

"No cruzamos un mismo río dos veces"

HERACLITO DE EFESO (535 a.C. - 484 a.C.)

Lo mismo sucede con el maíz:

Cambia el clima, el agua en el suelo, las relaciones de precio, nuestra perspectiva y visión del negocio.

Como podemos manejar "lotes por costumbre" ? Esto no tiene que ver con la evolución de la ciencia y la tecnología en el mundo.

Invernáculos en Sonora y Sinaloa - México

97 % menos de uso de agua y energía que los sistemas de riego convencionales

Como podremos avanzar?

En cualquier momento se ponen a producir nuestros cultivos.

Mientras tanto...

Nos estamos preguntando si tenemos que usar N-nitratos (desarrollo de 30 años)?

Necesitamos pensamiento lateral para romper el círculo

Adoptar más rápido las <u>innovaciones de procesos (más conocimiento, menor costo, mayor sustentabilidad).</u>

TODAS LAS TECNOLOGÍAS EN EL CAMPO YA!

Fertilización racional, fertilizantes más eficientes, nuevos genes, robótica, sensores, rotaciones sustentables, cultivos de servicio, insumos alternativos de origen biológico, **Todos juntos!**

De la mano de ello mayor producción y mejor calidad, valor agregado, desarrollo local, arraigo, alimentos terminados.

Debemos generarnos nuestra propia demanda y nuestro propio trabajo, para poder continuar haciendo lo que hacemos hoy, ante un mundo que no para de evolucionar.

